The wild McKay correspondence for cyclic groups of prime power order

نویسندگان

چکیده

The v-function is a key ingredient in the wild McKay correspondence. In this paper, we give formula to compute it terms of valuations Witt vectors, when given group cyclic prime power order. We apply study singularities quotient variety by square criterion whether stringy motive converges or not. Furthermore, if representation indecomposable, then also simple for being terminal, canonical, log and not canonical. With criterion, obtain more examples varieties which are Kawamata terminal (klt) but Cohen–Macaulay.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite groups with $X$-quasipermutable subgroups of prime power order

Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...

متن کامل

The Noether Numbers for Cyclic Groups of Prime Order

The Noether number of a representation is the largest degree of an element in a minimal homogeneous generating set for the corresponding ring of invariants. We compute the Noether number for an arbitrary representation of a cyclic group of prime order, and as a consequence prove the “2p− 3 conjecture”.

متن کامل

Coinvariants for Modular Representations of Cyclic Groups of Prime Order

We consider the ring of coinvariants for modular representations of cyclic groups of prime order. For all cases for which explicit generators for the ring of invariants are known, we give a reduced Gröbner basis for the Hilbert ideal and the corresponding monomial basis for the coinvariants. We also describe the decomposition of the coinvariants as a module over the group ring. For one family o...

متن کامل

Noether Numbers for Subrepresentations of Cyclic Groups of Prime Order

Let W be a finite-dimensional Z/p-module over a field, k, of characteristic p. The maximum degree of an indecomposable element of the algebra of invariants, k[W ]Z/p, is called the Noether number of the representation, and is denoted by β(W ). A lower bound for β(W ) is derived, and it is shown that if U is a Z/p submodule of W , then β(U) 6 β(W ). A set of generators, in fact a SAGBI basis, is...

متن کامل

An Uncertainty Principle for Cyclic Groups of Prime Order

Let G be a finite abelian group, and let f : G → C be a complex function on G. The uncertainty principle asserts that the support supp(f) := {x ∈ G : f(x) 6= 0} is related to the support of the Fourier transform f̂ : G → C by the formula |supp(f)||supp(f̂)| ≥ |G| where |X| denotes the cardinality of X. In this note we show that when G is the cyclic group Z/pZ of prime order p, then we may improve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2021

ISSN: ['1945-6581', '0019-2082']

DOI: https://doi.org/10.1215/00192082-9402078